Мембранный потенциал

16.12.2020


Мембранный потенциал, также трансмембранный потенциал или напряжение мембраны, иногда потенциал Нернста — разница в электрическом потенциале (электрический градиент), возникающая между зарядами внутренней и внешней стороны полупроницаемой мембраны (в частном случае мембраны клетки). Что касается внутренней части клетки, то типичные значения мембранного потенциала для неё располагаются в диапазоне от -40 мВ до -80 мВ.

Физические основы

Ионы и сила, обуславливающая их движение

Электрические сигналы, возникающие внутри биологических организмов, обусловлены движением ионов. Наиболее важные катионы для потенциала действия — катионы натрия (Na+) и калия (K+). Оба этих одновалентных катиона несут один положительный заряд. В потенциале действия может также участвовать катион кальция (Ca2+) , он представляет собой двухвалентный катион, несущий двойной положительный заряд. Анион хлора (​​Cl-) играет важную роль в потенциалах действия некоторых водорослей, однако, в потенциалах действия большинства животных принимает лишь небольшое участие.

Ионные насосы

Ионный насос — это транспортная система, обеспечивающая перенос иона с непосредственной затратой энергии вопреки концентрационному и электрическому градиентам.

Ионные каналы

Ионные каналы являются интегральными мембранными белками, через поры которых ионы могут перемещаться из межклеточного пространства во внутрь клеток и наоборот. Большинство ионных каналов проявляют высокую специфичность (селективность) по отношению к одному иону. Так, например, большинство калиевых каналов характеризуются высоким коэффициентом селективности катионов калия над катионами натрия в отношении 1000:1, хотя ионы калия и натрия имеют одинаковый заряд и лишь незначительно отличаются по радиусам. Пора канала, как правило, настолько мала, что ионы должны пройти через неё в одном порядке .

Равновесный потенциал (потенциал Нернста) или реверсивный потенциал

Равновесный потенциал (англ. equilibrium potential) иона является величиной трансмембранного напряжения, при котором диффузионные и электрические силы противопоставлены друг другу, так что результирующий поток ионов через мембрану равен нулю в силу одинаковой скорости потока в клетку и из клетки. Это означает, что трансмембранное напряжение точно противодействует усилию диффузии ионов, таким образом, что суммарный ток ионов через мембрану равен нулю и неизменен. Реверсивный потенциал имеет важное значение, поскольку он генерирует напряжение, которое действует на ионные каналы, делая их проницаемыми для ионов.

Равновесный потенциал конкретного иона обычно обозначается Ei. Потенциал для любого иона может быть вычислен с помощью уравнения Нернста. Например, реверсивный потенциал для ионов калия будет выглядеть следующим образом:

E e , K + = R T z F ln ⁡ [ K + ] 1 [ K + ] 2 , {displaystyle E_{e,K^{+}}={frac {RT}{zF}}ln {frac {[K^{+}]_{1}}{[K^{+}]_{2}}},}

где:

  • Ee,K+ — равновесный потенциал ионов K+, измеряемый в вольтах;
  • R — универсальная газовая постоянная, равная 8,3144 Дж/моль*К;
  • T — абсолютная температура в кельвинах (K);
  • z — число элементарных зарядов ионов, участвующих в реакции;
  • F — постоянная Фарадея, равная 96485 Кл/моль;
  • [K+]1 — внеклеточная концентрация ионов калия, измеряется в ммоль*л;
  • [K+]2 — внутриклеточная концентрация ионов калия, измеряется в ммоль*л.

Реверсивный потенциал (англ. reversal potential) численно равен равновесному потенциалу. Термин реверсивный потенциал отражает тот аспект, что при переходе через данное значение мембранного потенциала происходит обращение направления потока ионов.

Потенциал покоя

Градуированные значения

Другие значения

Эффекты и последствия